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Глобальная цель:

разработка более автономных и адаптивных

робототехнических устройств
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Задача: обучение с подкреплением

● Агент на основе опыта 

(эпизодов или траекторий) 

формирует модель среды

● для максимизации 

вознаграждения в длительной 

перспективе (lifelong learning, 

continual learning)

эпизод



Модель мира (среды) агента



Свойства модели:

● Эффективность 

использования опыта (sample 

efficiency)

● Обобщающая способность 

(выделение закономерностей | 

структуры среды)
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Sample efficiency vs обобщение

Клеточная среда
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Successor Features | Распределение будущих наблюдений



Слияние кластеров с похожим SF-представлением

Точность слияния



Двухуровневая модель памяти: нейронная реализация
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Предсказание наблюдений в клеточной среде 10x10 с 10-ю цветами
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Результаты экспериментов



Восстановленные матрицы переходов
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Результаты экспериментов



Сравнение с другими моделями

Модель Число 

эпизодов

Точность

Наша модель 1000 0.7

E-Prop RNN 5000 0.68

tPCN 2000 0.67



Заключение

Постепенная структуризация памяти 

эпизодов может быть более эффективной 

(sample efficient), чем структуризация 

изначально случайной матрицы перехода 

(как в обычных RNN).

Преимущества модели

● Можно реализовать 

обучение на локальных 

правилах

● Высокая эффективность 

использования опыта

● Структурированное 

представление
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Препринт по теме:

Вопросы сюда ⇨


