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Сверточные
импульсные 
нейронные сети для 
классификации 
изображений



Мотивация

• Сверточная сеть – необходимый элемент всех нейронных сетей, 
показывающих высокую точность классификации изображений.

• В режиме работы (inference) прямой перенос идеи сверточных
сетей в импульсный домен не вызывает проблем.

• В режиме обучения такой перенос проблематичен, так как 
нарушает принцип локальности – если каждая позиция 
сверточной матрицы реализуется отдельным нейроном, это 
означает, что один акт изменения элемента этой матрицы 
соответствует одновременному одинаковому изменению 
синаптического веса сразу у многих нейронов.

Решению данной проблемы и 
посвящено настоящее исследование.



Идея нашего метода вытекает из 2 
основных постулатов

1. Недопустимы нелокальные операции над синаптическими 
весами (no weight sharing).

2. Свертки зависят от области применения, а не от конкретной 
задачи – для разных задач из одной области могут быть 
применены одни и те же свертки.

Сверточные матрицы могут быть получены на основе 
большой репрезентативной выборки изображений из области 
предполагаемого применения сети и зафиксированы в виде 
непластичных слоев ИмНС. Обучение решению конкретных 
задач классификации будет при этом производится 
вышележащими слоями на основе архитектуры CoLaNET.



Алгоритм получения сверточных
матриц для изображений из 
данной прикладной области



Входные данные:

• Большой набор изображений (матриц яркостей пикселей) G

• Размер сверточных матриц K

• Число сверточных матриц NC

• Сдвиг свертки s

Гиперпараметры алгоритма:

• Пороговая яркость пикселя В

• Нижняя граница значения элементов сверточной матрицы wmin (<0)

• Верхняя граница значения элементов сверточной матрицы wmax

• Скорость обучения l

Результат алгоритма:

Набор сверточных матриц w = waij, где 0 ≤ a < NC, 0 ≤ i, j < K



Алгоритм состоит из итераций. Каждая итерация соответствует одному случайно взятому 

изображению из G. Возможно несколько эпох.

Кроме w в алгоритме участвует вспомогательный тензор W, той же размерности, что w.

Элементы W и w всегда связаны соотношением

𝑤 𝑊 = 𝑤𝑚𝑖𝑛 +
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)max(𝑊, 0)

𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛 +max(𝑊, 0)

и передаются из итерации в итерацию.

В начале алгоритма все элементы w и W равны 0 и -wmin(wmax - wmin)/wmax, 

соответственно.



Формальная запись одной итерации алгоритма

c ← the tensor of convolutions of g with w with the stride s.

E ← Ø

while max(c) > 0 & |E| < NC

<a, p, q> ← indices of random element of c such that capq = 

max(c)

if 𝑎 ∉ 𝐄
𝐄 ← 𝐄 ∪ 𝑎
gw ← K×K tile of g with upper left corner coordinates (ps, 

qs)

if max(c) < 1

nb ← the number of pixels in gw brighter than B.

if 0 < nb < K2

for all 0 ≤ i, j < K

𝑊𝑎𝑖𝑗 ← ቐ
𝑊𝑎𝑖𝑗 + 𝑙 𝑖𝑓 𝑔𝑖𝑗

𝑤 > 𝐵

𝑊𝑎𝑖𝑗 −
𝑙𝑛𝑏

𝐾2−𝑛𝑏
𝑜/𝑤

𝑤𝑎𝑖𝑗 ← 𝑤(𝑊𝑎𝑖𝑗)

end for

end if

else

p ← 0, nb ← 0, k ← 0

r ← set of all values in gw in decreasing order

while p < 1

for all 0 ≤ i, j < K

if 𝑔𝑖𝑗
𝑤 = 𝑟𝑘
𝑝 ← 𝑝 + 𝑟𝑘𝑤𝑎𝑖𝑗
Waij ← Waij + l

𝑤𝑎𝑖𝑗 ← 𝑤 𝑊𝑎𝑖𝑗

nb ← nb + 1

end if

end for

k ← k + 1

end while

for all 0 ≤ i, j < K

if 𝑔𝑖𝑗
𝑤 ≤ 𝑟𝑘

𝑊𝑎𝑖𝑗 ← 𝑊𝑎𝑖𝑗 −
𝑙𝑛𝑏

𝐾2−𝑛𝑏

𝑤𝑎𝑖𝑗 ← 𝑤(𝑊𝑎𝑖𝑗)

end if

end for

end if

cbrt ← 0 for all <b, r, t> for which r = p & t = q

end while



Неформальное описание одной итерации 
алгоритма

1. Считаем свертки нового изображения с существующим тензором 

сверток

2. Для каждой свертки находим самое большое значение, но так, чтобы в 

этой же позиции другие свертки не имели бОльших значений.

3. Если это значение мало (< 1), увеличиваем те элементы сверточной

матрицы, которые соответствуют ярким пикселям, остальные элементы 

соответственно уменьшаем.

4. Если это значение велико, находим самые яркие пиксели пока их сумма, 

взвешенная соответствующими сверточными коэффициентам не 

становится большей 1. Все соответствующие им элементы сверточной

матрицы увеличиваем, остальные соответственно уменьшаем.



Портирование сверточных матриц в сверточную
импульсную нейронную сеть

• Синаптические веса нейронов сверточного слоя пропорциональны элементам 

w. Коэффициент пропорциональности устанавливается из расчета заданной 

средней частоты срабатывания нейронов сверточного слоя.

• Так как для случая частотного кодирования реализовать max pooling сложно, 

используется mean pooling (точнее, sum pooling). Это соответствует нейрону, у 

которого все синаптические веса чуть больше порогового потенциала.

• Для получения точного sum pooling изменение мембранного потенциала 

нейрона при срабатывании чуть изменено по сравнению со стандартной 

моделью LIF:

𝑖𝑓 𝑢 ≥ 𝑢𝑇𝐻𝑅 , 𝑢 ← 𝑢 − 𝑢𝑇𝐻𝑅 , 𝑓𝑖𝑟𝑖𝑛𝑔



Применение сверточной
импульсной нейронной сети для 
классификации объектов в 
датасете Neovosion2



Этапы предобработки 
изображений в 
датасете Neovision2

Выделение объектов



Этапы предобработки 
изображений в 
датасете Neovision2

Построение разностной 
термокарты



Этапы предобработки 
изображений в 
датасете Neovision2

Создание массива 
распознанных объектов



Полученные сверточные матрицы



Структура классифицирующей сверточной
импульсной нейросети
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Схематичная структура сети CoLaNET
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Сравнение результатов



С чем сравнивали
CNN1. Классическая сверточная сеть, дающая 
точность >99% на MNIST
1. convolutional 32×4×4, stride 1, activation -

ReLu

2. max pooling 2×2

3. convolutional 64×3×3, stride 1, activation -

ReLu

4. max pooling 2×2

5. flatten, dropout 0.5

6. fully connected, activation – softmax, 5 target

classes

CNN2. Cверточная сеть, наиболее близкая по 
структуре к нашей
1. convolutional 28×9×9, stride 2, activation -

ReLu

2. max pooling 2×2

3. flatten, dropout 0.5

4. fully connected, activation – softmax, 5 target

classes

ULSNN. Импульсная сеть с обучающемся без учителя слоем 
P. Diehl , M. Cook, "Unsupervised learning of digit recognition using spike-
timing-dependent plasticity", Frontiers in Computational Neuroscience, vol. 9,
1015, https://www.frontiersin.org/journals/computational-
neuroscience/articles/10.3389/fncom.2015.00099

https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2015.00099


Результаты сравнения

Сеть
Точность, %

средняя
стандартное 
отклонение

CNN1 94.35 0.32

CNN2 92.34 0.42

ULSNN 78.30 0.28

CSNN 91.58 1.1



Олег Горюнов, Владимир Клиньшов
НИУ ВШЭ Нижний Новгород

Аналитическое исследование 
динамики обучения CoLaNET

Михаил Киселев
Kaspersky



CoLaNET * Kiselev M. CoLaNET - A Spiking Neural Network with Columnar Layered
Architecture for Classification // arXiv preprint: 2409.01230. – 2025.



Classifying NeuronsSimplified Digital Algorithm

Sensory Neurons

Предъявлен 
положительный 

пример?

𝑼𝒋 ≥ 𝜽?

Ничего не 
меняется

Ослабление 
связей #𝑗

𝑼𝒋 ≥ 𝟎?

𝑁 ← 𝑁 + 1,
Усиление 
связей #𝑁

𝑼𝒌 ≥ 𝜽?

Усиление 
связей #𝑘

Ослабление 
связей #𝑗 для
𝑈𝑗 ≥ 𝜃, 𝑘 ≠ 𝑗

𝑼𝒋 =෍

𝒊

𝒘𝒋𝒊𝒏𝒊

ДаНет

Нет Да Нет Да

Нет

Да

* Kiselev M. A digital machine learning algorithm simulating spiking
neural network CoLaNET //arXiv preprint:2503.17111. – 2025.



Задача бинарной классификации
Положительный 

пример

Негативный
примерКодирование входной активности

в виде Гауссовых рецептивных
полей:

𝒇𝒊(𝒙) = 𝒇𝒎𝒂𝒙 𝐞𝐱𝐩 −
𝒙 −𝒎𝒊

𝟐

𝟐𝝈𝟐

Фактическое число импульсов
определяется по распределению
Пуассона с соответствующим
средним.



Теоретические результаты



Зачем это нужно?

1. Понимание работы CoLaNET
2. Оптимизация гиперпараметров

MNIST

Перспективы
1. Более сложные задачи
2. Более сложные архитектуры

Публикации
1. Goryunov et al. "Modeling the Training Dynamics

of CoLaNET," IEEE Proceedings of DCNA,
pp. 39-41, 2025.

2. Goryunov et al. “Understanding the training
dynamics of CoLaNET by its simplified model”.
Chaos, Solitons and Fractals (submitted)



Спасибо за внимание!



Теоретические результаты

Область активности для одного примера 𝒍:

𝒍 = 𝟐𝝈 𝟐ln𝒇𝒎𝒂𝒙𝑻𝒑

Наиболее вероятное число микроколонок 𝑵:

𝑵 ≈
𝒃 − 𝒂

𝟐𝒍



Аппроксимируем вес в виде Гауссовой кривой

𝑼𝒋 = 𝑻𝒑𝒇𝒎𝒂𝒙𝒏𝒘𝒄

𝟐𝝅𝝈𝟐𝝌𝟐

𝝈𝟐 + 𝝌𝟐
exp −

𝒙𝒌 − 𝒙𝒋
𝟐

𝟐(𝝈𝟐 + 𝝌𝟐)

Следим за максимумом 𝒘𝒄

Тогда мембранный потенциал 𝑗-го нейрона:

Откуда можно найти вес 𝑤𝑡0 , когда нейрон начинает реагировать:

𝒘𝒕𝟎 =
𝜽

𝑻𝒑𝒇𝒎𝒂𝒙𝒏

𝟐𝝅𝝈𝟐𝝌𝟐

𝝈𝟐 + 𝝌𝟐
→ 𝑾𝒕𝟎 =

(𝒘𝒎𝒂𝒙 −𝒘𝒎𝒊𝒏)(𝒘𝒕𝟎 −𝒘𝒎𝒊𝒏)

(𝒘𝒎𝒂𝒙 −𝒘𝒕𝟎)

Теоретические результаты



𝒍𝒇 𝒘𝒕 = 𝟐 𝟐 𝝈𝟐 + 𝝌𝟐 ln
𝒘𝒕

𝒘𝒕𝟎

𝒅𝑾𝒄

𝒅𝒕
≈

𝒅𝒍

𝒃 − 𝒂
→ 𝒕𝟎 =

𝒘𝒕𝟎

𝒅

𝒃 − 𝒂

𝒍

𝒘𝒎𝒂𝒙 −𝒘𝒎𝒊𝒏
𝟐

𝒘𝒎𝒂𝒙(𝒘𝒎𝒂𝒙 −𝒘𝒕𝟎)

Пока нейрон не реагирует ни на один пример, ресурс в центре
изменяется по следующему ДУ:

Далее появляется область, на примеры из которой нейрон
самостоятельно реагирует:

𝒅𝑾𝒄

𝒅𝒕
≈

𝒅𝒍

𝒃 − 𝒂
𝟏 −

𝒍𝒇

𝟐𝒍



𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏 − 𝒃 − 𝒂 𝟏 −
𝒍𝒇

𝟐𝒍

𝒕𝟏 =
𝒘𝟏

𝒅

(𝒃 − 𝒂)

𝒍

𝒍𝟐

𝝈𝟐 + 𝝌𝟐
𝒘𝒎𝒂𝒙 −𝒘𝒎𝒊𝒏

𝟐

𝒘𝒎𝒂𝒙 −𝒘𝟏
𝟐

𝑾 𝒕 = 𝑾𝟏 + 𝑾𝒕𝟎 −𝑾𝟏 exp −
𝒕 − 𝒕𝟎
𝒕𝟏

Линеаризуя последнее уравнение, можно получить:

где

𝑾𝟏 =
(𝒘𝒎𝒂𝒙 −𝒘𝒎𝒊𝒏)(𝒘𝟏 −𝒘𝒎𝒊𝒏)

(𝒘𝒎𝒂𝒙 −𝒘𝟏)

Точность классификации можно найти по формуле:


